jueves, 5 de marzo de 2009
martes, 24 de febrero de 2009
TALLER DE SOLDADURA
como es la unión correcta en una soldadura?
denomine las partes del circuito cuando se esta soldando?
cuales son las fuentes de energía?
que tipos de corriente hallamos en el proceso?
que produce y para que se usa la cc y ca en smaw?
como se denominan las polaridades; grafíquelas ?
como es el movimiento de los electrones en las polaridades?
cuales son las funciones del revestimiento?
como se representa un electrodo; explique?
cual es la numeración para electrodos de rutilo; cite ejemplos?
cual es la numeración para electrodos celulósicos; cite ejemplos?
cual es la numeración para electrodos de cal y bajo hidrogeno; cite ejemplos?
que significa la denominación c2 y b2 , ubicados después de la numeración del electrodo?
que factor determina la distancia entre el electrodo y la pieza?
que afecta las variaciones del angulo del electrodo?
1. Normas de seguridad:
Choques eléctricos: qué pueden matar (mantenerse fuera del alcance del mismo)
Rayos del arco: dañino para los ojos y la piel, emplear la vestimenta adecuada y lentes de filtro.
Gases y vapores: mantener buena ventilación y mantenerse fuera del alcance del flujo de los gases.
Incendio y explosión: prestar atención al ambiente de w
Gases comprimidos: tener buen manejo para evitar daños personales o al equipo
Lesiones ala cara y ojos: al limpiar, desbarbar y esmeriral se presentan dichos peligros lo cual se recomienda protección para la cara y gafas de seguridad con protectores laterales
Anexo:
NORMAS DE SEGURIDAD EN OPERACIONES DE SOLDADURA
NORMAS GENERALES:
1. Solicite el correspondiente “permiso de trabajo “para realizar trabajos de soldadura y oxicorte.
2. No están permitidos los trabajos de soldadura en locales que contengan materiales combustibles, ni en las proximidades de polvo, vapores o gases explosivos.
3. No se pueden calentar, cortar o soldar recipientes que hayan contenido sustancias inflamables, explosivas o productos que por reacción con el metal del contenedor o recipiente generen compuestos inflamables o explosivos. Para realizar estos trabajos, es preciso eliminar previamente dichas sustancias.
4. Es obligatorio el uso de los equipos de protección individual requeridos para este tipo de operaciones.
5. Las operaciones de soldadura corte y esmerilado deberán efectuarse con la protección de toldos o mantas incombustibles, con el fin de evitar la dispersión de chispas.
2. La unión correcta es:
Al unir dos piezas de metal añadiendo metal al espacio entre ellas, se hace al fundir un metal de aporte y parte del metal de base, en una buena soldadura la fusión entre los metales es total y la soldadura es lo mas parecida al metal de base; y al unir dos piezas lo que se logra es al final es que las piezas unidas sean continuas.
3. Partes del circuito:
El electrodo, fuente de energía, la pieza de w y observamos su forma de conexión.
4. Fuentes
Transformador, rectificadores, generadores, alternadores impulsados por maquina, generadores y alternadores impulsados por motor, sistemas de operarios múltiples e inversores
5. Tenemos
Corriente alterna (CA)
Corriente continua (CC)
6. La CA produce la desviación del arco es decir la desviación magnética que desplaza el arco, pero no produce un arco tan uniforme debido a su naturaleza de cambio constante.
La CC produce un arco mas uniforme
7. Polaridad positiva: carga los electrones positivos en la parte superior del electrodo.
Polaridad negativa carga los electrones en la parte inferior en del electrodo
8. Con el electrodo positivo o polaridad inversa el flujo de electrones va hacia el electrodo, cuando se emplea el electrodo negativo los electrones van del electrodo hacia la pieza de w
La polaridad requerida depende del proceso, del electrodo y de la aplicación
9. Funciones:
Un electrodo está compuesto de núcleo o alma (parte interior de la varilla, la cual determina el diámetro del electrodo) y revestimiento (parte externa).
Funciones del revestimiento
Un grupo de las sustancias del revestimiento tiene la misión de añadir aleantes a la soldadura; otro protege el metal fundido durante la fusión y aumenta la ionización del aire. El revestimiento forma una copa en la punta del electrodo con el fin de dirigir el arco y las gotas de metal fundido y combina con el oxígeno y el nitrógeno del aire y con elementos que tiene el metal que se está soldando formando compuestos de poca densidad que suben a la superficie de la soldadura en forma de escorias.
Clases de electrodos
Hay 2 grupos de electrodos; los estructurales y los de baja calidad. Los más utilizados son los estructurales, de los que hay 4 tipos:
Básicos: Su recubrimiento está formado por óxido de calcio. Es un electrodo de alta densidad con una carga de rotura de hasta 50 kg/mm2. Se emplea en trabajos de gran responsabilidad.
Orgánicos o celulósicos: En su revestimiento figura la celulosa. Se emplean con frecuencia en la soldadura de tuberías.
Ácidos
Rutilos o de titanio:
Del grupo de electrodos de baja calidad encontramos 2 tipos más:
Oxidantes o de contacto
Neutros
Todos estos tipos de electrodos están señalados en el propio electrodo y en la caja con un símbolo para diferenciarlos. Rutilo (R), Básicos (B), Celulósicos (C), Ácidos (A) y Oxidantes (O).
11. Electrodos de rutilo:
2- Rutilo, EN, CC
3- Rutilo, CA/CC
4- Rutilo y polvo de hierro, CA/CC, EP
12. Electrodos celulósicos:
0- Celulósico, EP, CC
1- Celulósico, EP, CA/CC
13. Electrodos de cal y bajo hidrogeno:
5- Cal, CC, EP
6- Cal, CA/CC, EP
8- Cal y polvo de hierro CA/CC, EP
14. EJ:
8018 C2-B2 (Indica la clase de aleación en el electrodo y tiene que usarse el proceso de aleación específico.
15. La distancia entre el electrodo y la pieza determina el voltaje del arco, lo cual afecta el nivel de corriente o amperaje, si el arco es demasiado largo corto esta variación producirá una mal soldadura.
16. La penetración y la fusión, una transferencia de calor insuficiente y mal contorno del cordón.
CLASIFICACIÓN SAE DE ACEROS
La SEA emplea, a tal fin, números compuestos de cuatro o cinco cifras, según los casos, cuyo ordenamiento caracteriza o individualiza un determinado acero.
El significado de dicho ordenamiento es el siguiente:
Primera cifra 1 caracteriza a los aceros al carbono
Primera cifra 2 caracteriza a los aceros al níquel
Primera cifra 3 caracteriza a los aceros al cromo-níquel
Primera cifra 4 caracteriza a los aceros al molibdeno
Primera cifra 5 caracteriza a los aceros al cromo
Primera cifra 6 caracteriza a los aceros al cromo-vanadio
Primera cifra 7 caracteriza a los aceros al tungsteno
Primera cifra 9 caracteriza a los aceros al silicio-manganeso
En los aceros simples (un solo elemento predominante), las dos últimas cifras establecen el porcentaje medio aproximado de C en centésimo del 1%, cuando el tenor del mismo no alcanza al 1%.- Por último, la cifra intermedia indica el porcentaje o, en forma convencional, el contenido preponderante de la aleación, tal el caso de los aceros al Cr-Ni, en los que la segunda cifra corresponde al % de Ni.
Mediante el número SAE, los aceros al carbono, de hasta 1% de C, pueden ser fácilmente identificados; así un SAE 1025 indica:
Primera cifra 1 acero al carbono
Segunda cifra 0 ningún otro elemento de aleación predominanteUltimas cifras 25 0,25% de carbono medio aproximado de carbonoAcero SAE 1020:
Composición: 0.20%C; 0.60- 0.90%Mn; 0.04%máx. P; 0,05% máx. S.
Ataque: Picral (composición: ácido pícrico 4grs., etil o alcohol de metileno (95% o absoluto) 100ml). Aumento: 200X
La estructura recocida consiste en colonias de perlita (oscuro), en una matriz ferrítica (claro).
· Acero SAE 1080Composición: 0.8%C; 0,6-0,9%Mn.
Ataque: Picral (composición: ácido pícrico 4grs., etil o alcohol de metileno (95% o absoluto) 100ml.) Aumento: 200X
Barra de acero, laminada en caliente, austenizada a 1049ºC por media hora y enfriada en el horno (27,7ºC por hora). La estructura es perlítica, con algo de cementita esferoidal.
· Acero SAE 1095
Composición: 0.95%C; 0.3-0.5%Mn.Ataque: Picral (composición: ácido pícrico 4grs., etil o alcohol de metileno (95% o absoluto) 100ml.) Aumento: 200X
Acero laminado en frío y recocido a 727ºC por 30 hrs. La estructura que se observa es predominantemente perlítica (parecido a huellas digitales), con una red de cementita pro-eutectoide.
2) CLASIFICACIÓN DE LAS MÁQUINAS-HERRAMIENTAS
Las máquinas-herramientas tienen la misión fundamental de dar forma a las piezas por arranque de material.El arranque de material se realiza gracias a una fuerte presión de la herramienta sobre la sLas uperficie de la pieza, estando:
· Bien la pieza·
Bien la herramienta bien ·
la pieza y la herramienta
Animadas de movimiento.
Según sea la naturaleza del movimiento de corte, las máquinas-herramientas se clasifican en:
• Máquinas-herramientas de movimiento circular.
• Con el movimiento de corte en la pieza: Torno paralelo, torno vertical,
• Con el movimiento de corte en la herramienta: Fresadora, taladradora,
Mandrinadora.
• Máquinas-herramientas de movimiento rectilíneo: Cepillo, mortajadora, brochadora
Las máquinas-herramientas de movimiento circular tienen una mayor aplicación en la industria debido a que su capacidad de arranque de material es superior a las máquinas con movimiento de corte rectilíneo y por tanto su rendimiento.Lo mismo las máquinas de movimiento rectilíneo que las de movimiento circular se pueden “controlar”:
• Por un operario (máquinas manuales).
• Neumática, hidráulica o eléctricamente.
• Mecánicamente (por ej. Mediante levas).
• Por computadora (Control numérico: CN)
Elección de los aceros para herramientas:
En la mayoría de los casos nos encontramos con que son varios los tipos e incluso las familias de aceros que nos resolverían satisfactoriamente un determinado problema de herramientas, lo que hace que la selección se base en otros factores, tales como productividad prevista, facilidad de fabricación y costo. En última instancia es el costo de las herramientas por unidad de producto fabricado el que determina la selección de un determinado acero.Los aceros de herramientas, además de utilizarse para la fabricación de elementos de máquinas, se emplean para la fabricación de útiles destinados a modificar la forma, tamaño y dimensiones de los materiales por arranque de viruta, cortadura, conformado, embutición, extrusión, laminación y choque.De todo lo dicho se deduce que, en la mayoría de los casos, la dureza, tenacidad, resistencia al desgaste y dureza en caliente constituyen los factores más importantes a considerar en la elección de los aceros de herramientas. No obstante, en cada caso en particular hay que considerar también otros muchos factores, tales como la deformación máxima que puede admitirse en la herramienta; la descarburización superficial tolerable; la templabilidad o penetración de la dureza que se puede obtener; las condiciones en que tiene que efectuarse el tratamiento térmico, así como las temperaturas, atmósferas e instalaciones que requiere dicho tratamiento; y, finalmente, la maquinabilidad.
Clasificación:
WS. Acero de herramientas no aleado. 0.5 a 1.5% de contenido de carbón. Soportan sin deformación o pérdida de filo 250°C. También se les conoce como acero al carbono.
SS. Aceros de herramienta aleados con wolframio, cromo, vanadio, molibdeno y otros. Soporta hasta 600°C. También se les conoce como aceros rápidos.
HS. Metales duros aleados con cobalto, carburo de carbono, tungsteno, wolframio y molibdeno. Son pequeñas plaquitas que se unen a metales corrientes para que los soporten. Soportan hasta 900°C.
Diamante. Material natural que soporta hasta 1800°C. Se utiliza como punta de algunas barrenas o como polvo abrasivo.
Materiales cerámicos. Se aplica en herramientas de arcilla que soportan hasta 1500°C. Por lo regular se utilizan para terminados
Los aceros de herramientas más comúnmente utilizados han sido
clasificados en seis grupos principales, y dentro de ellos en subgrupos, todos los cuales se identifican por una letra en la forma siguiente:
Aceros de temple al agua
WAceros para trabajos en caliente H Aceros del tipo
HAceros rápidos T Aceros al tungsteno
M Aceros al molibdeno
Aceros para usos especiales L Aceros de baja aleación
F Aceros al tungsteno
P Aceros para moldes
Aceros para trabajos de choque S
Aceros para trabajos en frío O Aceros de temple en aceite
A Aceros de media aleación temple aire
D Aceros altos en cromo y en carbono
Clasificación de los aceros aleados de acuerdo con su utilizaciónAceros en los que tiene una gran importancia la templabilidad:Aceros de gran resistenciaAceros de cementación Aceros de muelles Aceros indeformables
Aceros de construcción:
Aceros de gran resistencia Aceros de cementaciónAceros para muellesAceros de nitruracionAceros resistentes al desgasteAceros para imanes Aceros para chapa magneticaAceros inoxidables y resistentes al calor
Aceros de herramientas:
Aceros rápidosAceros de corte no rápidos
Aceros indeformablesAceros resistentes al desgasteAceros para trabajos de choque
Aceros inoxidables y resistentes al calor.
DesgasteEs la degradación física (pérdida o ganancia de material, aparición de grietas, deformación plástica, cambios estrucuturales como transformación de fase o recristalización, fenómenos de corrosión, etc.) debido al movimiento entre la superficie de un material sólido y uno o varios elementos de contacto. [ 24] El desgaste sobre una superficie se puede cuantificar midiendo la pérdida de material según su desplazamiento relativo. Existen diferentes tipos de desgaste en dependencia de la situación encontrada. Varios modelos de desgaste incluyen adhesión, abrasión, fatiga y corrosión. El desgaste aumenta cuando existe presión y movimiento entre superficies. Esto es de gran importancia debido a que es un factor determinante en la vida y desempeño de las máquinas que están expuestas a este tipo de deterioro, pudiendo variar los costos de manera verdaderamente significativa. La región más sensible a las agresiones del entorno es la superficie de un material. En comparación con otras causas de deterioro de un material, los problemas que afectan a la superficie debido al desgaste requieren un consumo energético mínimo debido a que son sólo los átomos de unas pocas capas superficiales y los enlaces que los unen entre sí, los que deben hacer frente a las fuerzas del entorno. El desgaste metálico es un fenómeno al cual están expuestos los metales, y que involucran el desplazamiento y el arranque de partículas en la superficie del metal, el tema de desgaste es algo complicado de estudiar debido a su complejidad y el número de factores necesarios para describirlo (Lansdown and Price, 1986). Además del efecto que tiene la lubricación en el proceso de desgaste, existen también otros factores muy importantes. Entre los distintos factores se tienen los metalúrgicos, los cuales involucran la dureza, tenacidad, constitución, estructura y composición química. También se tienen los factores operacionales, tales como los materiales en contacto, el modo y tipo de carga, la velocidad, la temperatura, la rugosidad superficial y la distancia recorrida. Por otro lado,se encuentran los factores externos como lo es la corrosión (Lansdown and Price, 1986). Según Lansdown and Price (1986): En general el incremento de la dureza disminuye el desgaste en un metal, pero la relación entre estos dos fenómenos es compleja. En el desgaste abrasivo hay evidencias de que el valor del desgaste en metales comercialmente puros y aceros tratados térmicamente es inversamente proporcional a su dureza. Hay una tendencia general de que cuando se incrementa la carga, se incrementa también el valor,
del desgaste; se habla también de un punto crítico en la mayoría de los sistemas, en los que más allá de haber un aumento en el valor del desgaste mas bien ocurre primero un incremento de la carga. El valor del desgaste puede cambiar considerablemente con el cambio de la velocidad, pero no existe una relación general entre el desgaste y la velocidad. Un incremento en la velocidad puede conducir a un incremento o decremento del desgaste dependiendo del efecto de la temperatura en la superficie del material.
Normalización de las diferentes clases de acero
Llave de acero aleado para herramientasComo existe una variedad muy grande de clases de acero diferentes que se pueden producir en función de los elementos aleantes que constituyan la aleación, se ha impuesto, en cada país, en cada fabricante de acero, y en muchos casos en los mayores consumidores de aceros, unas Normas que regulan la composición de los aceros y las prestaciones de los mismos.Por ejemplo en España actualmente están regulados por la norma UNE-EN 10020:2001 y antiguamente estaban reguladas por la norma UNE-36010.[25]
Existen otras normas reguladoras del acero, como la clasificación de AISI (de hace 70 años, y de uso mucho más extenso internacionalmente), ASTM,[26] DIN, o la ISO 3506.
A modo de ejemplo se expone la clasificación regulada por la norma UNE-36010, que ya ha sido sustituida por la norma UNE-EN10020:2001, y están editadas por AENOR:
Norma UNE-36010
La norma española UNE-36010 es una normalización o clasificación de los aceros para que sea posible conocer las propiedades de los mismos. Esta Norma indica la cantidad mínima o máxima de cada componente y las propiedades mecánicas que tiene el acero resultante.
En España, el Instituto del Hierro y del Acero (IHA) creó esta norma que clasifica a los aceros en cinco series diferentes a las que identifica por un número.
Cada serie de aceros se divide a su vez en grupos, que especifica las características técnicas de cada acero, matizando sus aplicaciones específicas.
lunes, 9 de febrero de 2009
EL TORNO
1) Usar gafas
2) Usar tapa oídos
3) Usar camisas de manga corta
4) No usar anillos, cadenas ni relojes
Artículo principal: Torno
El torno paralelo o mecánico es el tipo de torno que evolucionó partiendo de los tornos antiguos cuando se le fueron incorporando nuevos equipamientos que lograron convertirlo en una de las máquinas herramientas más importante que han existido.
Sin embargo en la actualidad este tipo de torno está quedando relegado a realizar tareas poco importantes, a utilizarse en los talleres de aprendices y en los talleres de mantenimiento para realizar trabajos puntuales o especiales.
Movimiento de avance: es debido al movimiento de la herramienta de corte en la dirección del eje de la pieza que se está trabajando. En combinación con el giro impartido al husillo, determina el espacio recorrido por la herramienta por cada vuelta que da la pieza. Este movimiento también puede no ser paralelo al eje, produciéndose así conos. En ese caso se gira el carro de debajo del transversal ajustando en una escala graduada el ángulo requerido, que será la mitad de la conicidad deseada. Los tornos convencionales tiene una gama fija de avances, mientras que los tronos de Control Numérico los avances son programables de acuerdo a las condiciones óptimas de mecanizado y los desplazamientos en vacío se realizan a gran velocidad.
Profundidad de pasada: movimiento de la herramienta de corte que determina la profundidad de material arrancado en cada pasada. La cantidad de material factible de ser arrancada depende del perfil del útil de corte usado, el tipo de material mecanizado, la velocidad de corte, etc.
Nonios de los carros: para regular el trabajo torneado los carros del torno llevan incorporado unos nonios en forma de tambor graduado, donde cada división indica el desplazamiento que tiene el carro, ya sea el longitudinal, el transversal o el charriot. La medida se va conformando de forma manual por el operador de la máquina por lo que se requiere que sea una persona muy experta quien lo manipule si se trata de conseguir dimensiones con tolerancias muy estrechas. Los tornos de control numérico ya no llevan nonios sino que las dimensiones de la pieza se introducen en el programa y estas se consiguen automáticamente.
Estructura del torno paralelo
En el torno paralelo, como en todas las maquinas herramienta, podemos diferenciar dos partes fundamentales:
Los elementos componentes: Que agrupa los principales elementos que constituyen la maquina.
La cadena cinemática. que transmite el movimiento a la pieza y la cuchilla
Elementos componentes
El torno tiene cuatro componentes principales:
Bancada: sirve de soporte para las otras unidades del torno. En su parte superior lleva unas guías por las que se desplaza el cabezal móvil o contrapunto y el carro principal.
cabezal fijo: contiene los engranajes o poleas que impulsan la pieza de trabajo y las unidades de avance. Incluye el motor, el husillo, el selector de velocidad, el selector de unidad de avance y el selector de sentido de avance. Además sirve para soporte y rotación de la pieza de trabajo que se apoya en el husillo.
Cabezal móvil: el contrapunto puede moverse y fijarse en diversas posiciones a lo largo. La función primaria es servir de apoyo al borde externo de la pieza de trabajo.
Cabezal móvil
El cabezal móvil o contracabezal (ver figura) esta apoyado sobre las guías de la bancada y se puede desplazar manualmente a lo largo de ellas según la longitud de la pieza a mecanizar, llevado al punto deseado se bloquea su posición con la palanca (T6).
Mediante el volante (T1) se puede avanzar o retroceder el contrapunto (T5) sobre el cuerpo del contracabezal (T3), este desplazamiento se puede bloquear impidiendo que retroceda con la palanca (T2).
En este contracabezal la base (T4) y el cuerpo (T3) son piezas distintas fijadas una a otra mediante tornillos, que pueden ser aflojados y permitir un cierto desplazamiento transversal del cuerpo respecto a su base, esta operación se puede hacer para mecanizar conos de pequeño ángulo de inclinación.
Carros portaherramientas: consta del carro principal, que produce los movimientos de avance y profundidad de pasada, el carro transversal, que se desliza transversalmente sobre el carro principal, y el carro superior orientable, formado a su vez por tres piezas: la base, el charriot y el portaherramientas. Su base está apoyada sobre una plataforma giratoria para orientarlo en cualquier dirección.
Detalle del carro portaherramientas
En la imagen se puede ver en detalle el carro de un torno paralelo, el carro principal (4) esta apoyado sobre las guías de la bancada y se mueve longitudinalmente por ellas,
En la parte delantera esta el cuadro de mecanismos (5) el volante (5a) permite desplazarlo manualmente a derecha o izquierda, el embrague de roscar (5b) tiene dos posiciones desembragado o embragado en esta posición al carro se mueve longitudinalmente a velocidad constante por el husillo de roscar. El embrague de cilindrar (5c) tiene tres posiciones cilindrar desembragado y refrentar, la velocidad de avance vendrá fijada por el husillo de cilindrar. En este panel de mandos se puede conectar uno u otro automático, pero no se puede modificar ni la velocidad de avance ni el sentido del movimiento que tendrá que fijarse en la caja de avances y transmitido al carro mediante el husillo de roscar o de cilindrar según corresponda.
El carro transversal (3) esta montado y ajustado en cola de milano sobre el caro longitudinal y se puede desplazar transversalmente, de forma manual con la manivela (3b) o en automático refrentando.
Sobre el carro transversal esta el carro orientable (2) este carro se puede girar sobre si mismo un ángulo cualesquiera marcado en la escala (2b), mediante la manivela (2a) este carro se puede avanzar o retroceder.
Sobre el carro orientable, esta la torreta portaherramientas (1) donde se monta la cuchilla
Cadena cinemática
La cadena cinemática genera, trasmite y regula los movimientos de los elementos del torno, según las operaciones ha realizar.
Detalle de los mandos de la caja de velocidades y avances
Motor: normalmente eléctrico, que genera el movimiento y esfuerzo de mecanizado.
Caja de velocidades:
con la que se determina la velocidad y el sentido de giro del eje del trono (H4), partiendo del eje del motor que gira a velocidad constante.
En la imagen se puede ver el cabezal de un torno, el eje principal sobre el que esta montado el plato (H4), las palancas de la caja de velocidades e inversor de giro (H2) (H3) y (H5).
Caja de avances:
con la que se establecen las distintas velocidades de avance de los carros, partiendo del movimiento del eje del torno. Recuérdese que los avances en el torno son en milímetros de avance por revolución del plato del torno.
En la imagen se puede ver en la parte posterior (H10), la caja de la lira, que conecta la parte posterior del eje del torno con la caja de avances (H6), la lira que no se ve en la imagen, determina la relación de transmisión entre el eje principal y la caja de avances mediante engranajes desmontables.
Ejes de avances:
que trasmiten el movimiento de avance de la caja de avances al carro principal, suelen ser dos: Eje de cilindrar (H8), ranurado para trasmitir un movimiento rotativo a los mecanismos del carro principal, este movimiento se emplea tanto para el desplazamiento longitudinal del carro principal, como para el transversal del carro transversal.
Eje de roscar (H7), roscado en toda la longitud que puede estar en contacto con el carro, el embrague de roscar es una tuerca partida que abraza este eje cuando está embragado, los avances con este eje son más rápidos que con el de cilindrar, y se emplea como su nombre indica en las operaciones de roscado.
En la imagen se puede ver un tercer eje (H9) con una palanca de empuñadura roja junto a la caja de avances, este tercer eje no existe en todos los modelos de torno y permite, mediante un conmutador, poner el motor eléctrico en marcha o invertir su sentido de giro, otra u otras dos palancas similares están en el carro principal, a uno u otro lado, que permiten girar este eje colocando en las tres posiciones giro a derecha, parado o izquierda. En los modelos de torno que no disponen de este tercer eje, la puesta en marcha se hace mediante pulsadores eléctricos situados normalmente en la parte superior del cabezal.
Se requieren ciertos accesorios, como sujetadores para la pieza de trabajo, soportes y portaherramientas. Algunos accesorios comunes incluyen:
Plato de sujeción de garras: sujeta la pieza de trabajo en el cabezal y transmite el movimiento.
Centros: soportan la pieza de trabajo en el cabezal y en la contrapunta.
Perno de arrastre: se fija en el plato de torno y en la pieza de trabajo y le transmite el movimiento a la pieza cuando está montada entre centros.
Soporte fijo o luneta fija: soporta el extremo extendido de la pieza de trabajo cuando no puede usarse la contrapunta.
Soporte móvil o luneta móvil: se monta en el carro y permite soportar piezas de trabajo largas cerca del punto de corte.
Torreta portaherramientas con alineación múltiple.
Especificaciones de los tornos paralelos convencionales
Capacidad:
Altura entre puntos: distancia entre puntos, Diámetro admitido sobre bancada, Diámetro admitido sobre escote, Diámetro admitido sobre carro transversal, Anchura de la bancada, Longitud del escote delante del plato liso.
Cabezal
Diámetro del agujero del husillo principal, Nariz del husillo principal, Cono Morse del husillo principal, Gama de velocidades del cabezal en r.p.m. Número de velocidades
Carros Recorrido del carro transversal, Recorrido del charriot, Dimensiones máximas de la herramienta. Gama de avances longitudinales, Gama de avances transversales.
Roscado
Gama de pasos métricos, Gama de pasos Witworth, Gama de pasos modulares, Gama de pasos Diametral Pitch. Paso del husillo patrón.
Contrapunto
Diámetro de la caña del contrapunto, Recorrido de la caña del contrapunto, Cono Morse del contrapunto
Motores:
Potencia del motor principal en kW. Potencia de la motobomba de refrigerante en kW.
Lunetas
Capacidad luneta fija mínima- máxima, Capacidad luneta móvil mínima máxima